Forums Neueste Beiträge
 

Das Kalenderblatt 091212

11/12/2009 - 13:42 von WM | Report spam
Now, this has the attractive feature that it solves both problems at
once. First, I can say immediately, I don't let the electron act on
itself, I just let this act on that, hence, no self-energy! Secondly,
there is not an infinite number of degrees of freedom in the field.
{{Darum kann auch eine realistische Mathematik nicht mit Unendlichem
rechnen. (Achtung! Doppelte Wortbedeutung.}} There is no field at all;
or if you insist on thinking in terms of ideas like that of a field,
this field is always completely determined by the action of the
particles which produce it. You shake this particle, it shakes that
one, but if you want to think in a field way, the field, if it's
there, would be entirely determined by the matter which generates it,
and therefore, the field does not have any independent degrees of
freedom and the infinities from the degrees of freedom would then be
removed. As a matter of fact, when we look out anywhere and see light,
we can always "see" some matter as the source of the light. We don't
just see light (except recently some radio reception has been found
with no apparent material source).
You see then that my general plan was to first solve the classical
problem, to get rid of the infinite self-energies in the classical
theory, and to hope that when I made a quantum theory of it,
everything would just be fine.
That was the beginning, and the idea seemed so obvious to me and so
elegant that I fell deeply in love with it. And, like falling in love
with a woman, it is only possible if you do not know much about her,
so you cannot see her faults. The faults will become apparent later,
but after the love is strong enough to hold you to her.
{{MatheRealismus. Es bedarf zunàchst der Überwindung der antrainierten
Cantorschen Unendlichkeitsreflexe. Außerdem muss man die
Schwachstellen akzeptieren. Aber wenn man bedenkt, dass niemand jemals
und niemals jemand von 1 bis 10^30 gezàhlt hat, zàhlt oder wird zàhlen
wollen, ist das machbar. Als wunderbare Kompensation zeigt sich die
Welt frei von Widersprüchen.}}
[R.P. Feynman, Nobel-Vortrag (1965)]
http://nobelprize.org/nobel_prizes/...cture.html

Der ganze Vortrag ist sehr lesenswert, doch in dsm off topic.

Gruß, WM
 

Lesen sie die antworten

#1 Deutscher Geist
11/12/2009 - 14:14 | Warnen spam
On 11 Dez., 13:42, WM wrote:
Now, this has the attractive feature that it solves both problems at
once. First, I can say immediately, I don't let the electron act on
itself, I just let this act on that, hence, no self-energy! Secondly,
there is not an infinite number of degrees of freedom in the field.
{{Darum kann auch eine realistische Mathematik nicht mit Unendlichem
rechnen. (Achtung! Doppelte Wortbedeutung.}} There is no field at all;
or if you insist on thinking in terms of ideas like that of a field,
this field is always completely determined by the action of the
particles which produce it. You shake this particle, it shakes that
one, but if you want to think in a field way, the field, if it's
there, would be entirely determined by the matter which generates it,
and therefore, the field does not have any independent degrees of
freedom and the infinities from the degrees of freedom would then be
removed. As a matter of fact, when we look out anywhere and see light,
we can always "see" some matter as the source of the light. We don't
just see light (except recently some radio reception has been found
with no apparent material source).
You see then that my general plan was to first solve the classical
problem, to get rid of the infinite self-energies in the classical
theory, and to hope that when I made a quantum theory of it,
everything would just be fine.
That was the beginning, and the idea seemed so obvious to me and so
elegant that I fell deeply in love with it. And, like falling in love
with a woman, it is only possible if you do not know much about her,
so you cannot see her faults. The faults will become apparent later,
but after the love is strong enough to hold you to her.
{{MatheRealismus. Es bedarf zunàchst der Überwindung der antrainierten
Cantorschen Unendlichkeitsreflexe. Außerdem muss man die
Schwachstellen akzeptieren. Aber wenn man bedenkt, dass niemand jemals
und niemals jemand von 1 bis 10^30 gezàhlt hat, zàhlt oder wird zàhlen
wollen, ist das machbar. Als wunderbare Kompensation zeigt sich die
Welt frei von Widersprüchen.}}
[R.P. Feynman, Nobel-Vortrag (1965)]http://nobelprize.org/nobel_prizes/...man-lec...

Der ganze Vortrag ist sehr lesenswert, doch in dsm off topic.

Gruß, WM




Was auch immer jetzt Richard Feynman 1965 vorgetragen hat - Pres.
Obama jat gestern zumindest das Verdienst zur Beendigung des Kalten
Krieges sich selbst zugeschrieben.


Im 1 Semester zweifelte ich schon den hier besprochenen Liouville
an :


******************************** Wiki *********************
Der Satz von Liouville (auch „Liouville-Theorem“ genannt, nach Joseph
Liouville) ist eine direkte Folge aus der Liouville-Gleichung und
besagt, dass das von benachbarten Trajektorien im Phasenraum
eingeschlossene (mehrdimensionale) Volumen konstant ist.

**************************************************************

L. setzt hier wie Richard vorraus daß jedes Teilchen Kraftfelder
großer Reichweite besitzt - was meint ihr ?

Ähnliche fragen