Das Kalenderblatt 100204

03/02/2010 - 11:44 von WM | Report spam
The clarification of the question to what extent, and under what
conditions, it is admissible, in the study of infinite sets, to ignore
the process of formation, cannot as yet be regarded as complete.
(Andrej N. Kolmogorov, zitiert in Vilenkin, p. 130)
Naum Yakovlevich Vilenkin: "In search of infinity", Birkhàuser, Boston
(1995)

http://books.google.de/books?id=cU3...mp;f=false

Nö, ich zàhle nicht über Vereinigungen.
[Christopher Creutzig, (2010)]

http://groups.google.com/group/de.s...ode=source]

Gruß, WM
 

Lesen sie die antworten

#1 Albrecht
05/02/2010 - 11:18 | Warnen spam
On 3 Feb., 11:44, WM wrote:
The clarification of the question to what extent, and under what
conditions, it is admissible, in the study of infinite sets, to ignore
the process of formation, cannot as yet be regarded as complete.
(Andrej N. Kolmogorov, zitiert in Vilenkin, p. 130)
Naum Yakovlevich Vilenkin: "In search of infinity", Birkhàuser, Boston
(1995)

http://books.google.de/books?id=cU3...mp;sour...

Nö, ich zàhle nicht über Vereinigungen.
[Christopher Creutzig, (2010)]

http://groups.google.com/group/de.s...7774571...]

Gruß, WM



Nicht zu diesem, aber vielleicht allg. für die Kalenderblattsammlung
interessant?:

http://www.themathpage.com/areal/ex...ionals.htm

Oder auch einfach für Neugierige.

Zitat:
"Any claim, then, that there is a number to name every length will
require that the names of numbers be continuous. A continuum of
lengths make sense. But a continuum of names is an absurdity.

Or are there "numbers" with no names? If so, then they will be
"numbers" that are not the measures of anything. They will be
"numbers" of which we have no knowledge -- which we could never place
with respect to order relative to any rational number. In other
words, they will not be numbers."


Gruß
Albrecht

Ähnliche fragen