Das Kalenderblatt 120518

17/05/2012 - 09:27 von WM | Report spam
Gödel proved the existence of God in a relatively complicated way
using the positive and negative properties introduced by Leibniz and
the axiomatic method ("the axiomatic method is very powerful", he said
with a faint smile).
http://www.stats.uwaterloo.ca/~cgsmall/ontology.html
http://userpages.uni-koblenz.de/~beckert/Lehre/Seminar-LogikaufAbwegen/graf_folien.pdf

Couldn't the following simple way be more effective?
1) The set of real numbers is uncountable.
2) Humans can only identify countably many words.
3) Humans cannot distinguish what they cannot identify.
4) Humans cannot well-order what they cannot distinguish.
5) The real numbers can be well-ordered.
6) If this is true, then there must be a being with higher capacities
than any human.
QED

[I K Rus: "Can the existence of god be proved from mathematics?",
Philosophy.StackExchange, May 1, 2012]
http://philosophy.stackexchange.com...athematics

I K Rus stellte diese Frage gleichzeitig und -lautend in den Foren
Christianity.StackExchange, Mathematics.StackExchange und
Mathoverflow, wo sie aber nach mehr oder weniger langer Lebensdauer
erbarmungslos ausradiert wurde. Die Matheologen scheinen peinlich
berührt. Den Grund für diese Orthodoxie mag der Leser aus den
Antworten zur folgenden Frage entnehmen (die selbstverstàndlich auch
nicht mehr auffindbar sind):

We use the axiom of choice and prove from it that every set of real
numbers can be well-ordered. From the fact that there are not enough
names available and that ordering of numbers without names is
impossible, we can conclude that the axiom must be abolished. [User]

Could you spell out what you mean by "ordering of numbers without
names is impossible"? That seems to be the crucial point. In the usual
treatment of the subject, this is not true. [Joriki]

Your claim that "ordering numbers without names is impossible" is
simply unjustified. [M Suárez-Alvarez]

Likewise "real numbers belong to the set of names". Numbers are not
names. [C. Eagle]

The axiom you need to abolish is "an immaterial object cannot be put
in any well-ordering unless you can refer to it". [Sdcvvc]

A countable sequence can have uncountable limit points, as an
enumeration of the rationals shows. [M Greinecker]

[Mathematics.StackExchange (2012) inzwischen entfernt]

Gruß, WM
 

Lesen sie die antworten

#1 netzweltler
17/05/2012 - 13:14 | Warnen spam
On 17 Mai, 09:27, WM wrote:
Gödel proved the existence of God in a relatively complicated way
using the positive and negative properties introduced by Leibniz and
the axiomatic method ("the axiomatic method is very powerful", he said
with a faint smile).http://www.stats.uwaterloo.ca/~cgsmall/ontology.htmlhttp://userpages.uni-koblenz.de/~beckert/Lehre/Seminar-LogikaufAbwege...

Couldn't the following simple way be more effective?
1) The set of real numbers is uncountable.
2) Humans can only identify countably many words.
3) Humans cannot distinguish what they cannot identify.
4) Humans cannot well-order what they cannot distinguish.
5) The real numbers can be well-ordered.
6) If this is true, then there must be a being with higher capacities
than any human.
QED



Ob das Gott beweist ist in Frage zu stellen. Könnte aber ein guter
Hinweis darauf sein, dass der Mensch mit seinen
Wahrnehmungsfàhigkeiten doch nicht so weit oben auf der Leiter steht,
wie er gerne glaubt.


[I K Rus: "Can the existence of god be proved from mathematics?",
Philosophy.StackExchange, May 1, 2012]http://philosophy.stackexchange.com...stence-...



netzweltler

Ähnliche fragen