Gilt bei rein zufälligen Ereignissen immer die Poisson-Verteilung?

07/08/2008 - 13:19 von akiefel | Report spam
als Beispiel für "rein zufàllig" sei der Atomzerfall mit sehr, sehr
langer Halbwertzeit im Vergleich zur Zerfallrate genannt.

Gruß
Andrea
 

Lesen sie die antworten

#1 karl
07/08/2008 - 20:11 | Warnen spam
schrieb:
als Beispiel für "rein zufàllig" sei der Atomzerfall mit sehr, sehr
langer Halbwertzeit im Vergleich zur Zerfallrate genannt.




Du sollst dich etwas mehr mit W-rechnung befassen, bevor Du solche
Fragen stellst.

1) Wie definierst Du "rein zufàllig"? Ein Beispiel nützt da nix.

2) Atomzerfall wird oft mit
Poissonprozessen modelliert, nur die Zahl der Zerfàlle in einem
Intervall hat dann eine Poissonverteilung.

3) Wenn Du für einen stationàren Punktprozeß vorschreibst, das die
Zahl der Punkt in verschiedenen Intervallen unabhàngig sind und keine
Mehrfachpunkte vorkommen, erhàltst Du einen homogenen Poissonprozeß
(Die entsprechenden Begriffe müßtest Du kennen und verstehen,
daß Du meine Antwort verstehst, siehe Zeile 1.)

Ciao

Karl

Ähnliche fragen