Schwurbeleien des Hochstaplers Mücke Mückenheim

02/12/2010 - 10:50 von JürgenR | Report spam
Es geschieht immer wieder, das jemand in Versuchung geràt
Herrn Mückenheim ernst zu nehmen. Ich habe diesen Fehler
selber auch gemacht.

Meistens vermeidet Herr WM konkrete
mathematische Aussagen, aber er hat verschiedene Aufsàtze
geschrieben, die er vermutlich zu publizieren hoffte, und dort
stehen einige erstaunliche Dinge, die einem helfen zu verstehen,
wie es um seinen Gesisteszustand bestellt ist.

Die Sprache ist Westerwelsch, aber trotzdem leichter verstàndlich als seine
Usenet-Schwurbeleien. Hier einige Zitate:

"If a set consists of different finite whole numbers only, then it has
necessarily a finite number of
members and, hence, is a finite set."

"|N cannot contain an actually infinite number of
members, i.e., a number of members which is larger than any member of the
set, because the natural
numbers enumerate themselves."

"Theorem: Every finite nonempty set of positive even numbers contains at
least one number n
surpassing the cardinal number of the set.[] This proves the existence
of a natural number n
surpassing the cardinal number of the set of all positive even numbers
Aleph_0, although this smallest
transfinite cardinal number, according to its inventor Cantor, should be
larger than any finite number."

"But it is easy to see that mathematics sometimes requires the existence of
not less than 2^(aleph_0) natural
numbers. Bishop Nicole de Oresme proved already in the 14th century that the
harmonic series does
not converge: 1/1 + (1/2) + (1/3 + (1/4) + (1/5 + 1/6 + 1/7 + 1/8) + .
Every sum in brackets amounts to at least 1/2. If we take infinitely many
sums, we get infinitely many
times 1/2 or more, so that the total sum is not finite. Counting the pairs
of brackets, we find that not
less than aleph_0 of them are necessary. Counting the fractions we find that
Nicole de
Oresme used 2^(aleph_0) natural numbers as denominators, not aware of
Cantors celebrated
theorem according to which so many natural numbers are not available."

"Several important definitions require more than aleph_0 natural numbers.
If, for instance, the sequence 1/n!
cannot be calculated for infinitely many terms, i. e. up to 1/aleph_0, then
Euler's number e is not irrational
let alone transcendental. So (aleph_0)! natural numbers must unavoidably
exist to save the existence of e."

"The first transcendental numbers, which J. Liouville found in 1844, are
calculated by infinite series
like tau = Σ10^nu!. Here 10^(aleph_0)! natural numbers are needed. Would
they not exist, there were no
transcendental Liouville numbers and presumably no transcendental numbers at
all. From this point of
view, the existence of transcendental numbers proves the equivalence
(*) |N = |R
which, if no transcendental numbers would exist, was also true, because in
that case only the set of
algebraic numbers with its cardinality aleph_0 remained. Consequently,
equivalence (*) is true in any case."

Und falls Sie meinen, ich hàtte diesen Salat selber gemischt, etwa um mich
über Herrn Professor Mückenheim
und die Hochschule Augsburg lustig zu machen, der kann selber nachschlagen

http://www.hs-augsburg.de/~mueckenh/Infinity/MA3PP.pdf

und wer in Versuchung geràt, mit diesem Hohlkopf ein vernünftiges Gespràch
führen zu wollen,
der ist selber schuld.
 

Lesen sie die antworten

#1 wernertrp
02/12/2010 - 12:52 | Warnen spam
On 2 Dez., 10:50, JürgenR wrote:
Es geschieht immer wieder, das jemand in Versuchung geràt
Herrn Mückenheim ernst zu nehmen. Ich habe diesen Fehler
selber auch gemacht.

Meistens vermeidet Herr WM konkrete
mathematische Aussagen, aber er hat verschiedene Aufsàtze
geschrieben, die er vermutlich zu publizieren hoffte, und dort
stehen einige erstaunliche Dinge, die einem helfen zu verstehen,
wie es um seinen Gesisteszustand bestellt ist.

Die Sprache ist Westerwelsch, aber trotzdem leichter verstàndlich als seine
Usenet-Schwurbeleien.  Hier einige Zitate:

"If a set consists of different finite whole numbers only, then it has
necessarily a finite number of
members and, hence, is a finite set."

"|N cannot contain an actually infinite number of
members, i.e., a number of members which is larger than any member of the
set, because the natural
numbers enumerate themselves."

"Theorem: Every finite nonempty set of positive even numbers contains at
least one number n
surpassing the cardinal number of the set.[] This proves the existence
of a natural number n
surpassing the cardinal number of the set of all positive even numbers
Aleph_0, although this smallest
transfinite cardinal number, according to its inventor Cantor, should be
larger than any finite number."

"But it is easy to see that mathematics sometimes requires the existence of
not less than 2^(aleph_0) natural
numbers. Bishop Nicole de Oresme proved already in the 14th century that the
harmonic series does
not converge: 1/1 + (1/2) + (1/3 + (1/4) + (1/5 + 1/6 + 1/7 + 1/8) + .
Every sum in brackets amounts to at least 1/2. If we take infinitely many
sums, we get infinitely many
times 1/2 or more, so that the total sum is not finite. Counting the pairs
of brackets, we find that not
less than aleph_0 of them are necessary. Counting the fractions we find that
Nicole de
Oresme used 2^(aleph_0) natural numbers as denominators, not aware of
Cantors celebrated
theorem according to which so many natural numbers are not available."

"Several important definitions require more than aleph_0 natural numbers.
If, for instance, the sequence 1/n!
cannot be calculated for infinitely many terms, i. e. up to 1/aleph_0, then
Euler's number e is not irrational
let alone transcendental. So (aleph_0)! natural numbers must unavoidably
exist to save the existence of e."

"The first transcendental numbers, which J. Liouville found in 1844, are
calculated by infinite series
like tau = Σ10^nu!. Here 10^(aleph_0)! natural numbers are needed. Would
they not exist, there were no
transcendental Liouville numbers and presumably no transcendental numbers at
all. From this point of
view, the existence of transcendental numbers proves the equivalence
(*) |N = |R
 which, if no transcendental numbers would exist, was also true, because in
that case only the set of
algebraic numbers with its cardinality aleph_0 remained. Consequently,
equivalence (*) is true in any case."

Und falls Sie meinen, ich hàtte diesen Salat selber gemischt, etwa um mich
über Herrn Professor Mückenheim
und die Hochschule Augsburg lustig zu machen, der kann selber nachschlagen

http://www.hs-augsburg.de/~mueckenh/Infinity/MA3PP.pdf

und wer in Versuchung geràt, mit diesem Hohlkopf ein vernünftiges Gespràch
führen zu wollen,
der ist selber schuld.




Wie man mich tàuschen kann.
Dachte bis jetzt Mückenheim ist ein alias avatar in der matrix.

Ähnliche fragen