Singulärwertzerlegung numerisch stabil

18/06/2010 - 15:40 von Thomas Plehn | Report spam
Hallo,

ich verwende die Singulàrwertzerlegung von mathdotnet, jedoch
konvergiert diese in einigen Fàllen nicht.
Kann man eventuell mit Pràkonditionierung nachhelfen, damit das ganze
numerisch stabiler wird?
Wie müsste man vorgehen?
Bzw. kann jemand sagen, wann die SVD tatsàchlich numerisch instabil
wird? Theoretisch sollte sie immer existieren.
Was kann ich sonst noch tun?
Ich benötige die Pseudoinverse.
 

Lesen sie die antworten

#1 Bastian Erdnuess
18/06/2010 - 18:35 | Warnen spam
["Followup-To:" header set to de.sci.mathematik.]

Thomas Plehn wrote:

ich verwende die Singulàrwertzerlegung von mathdotnet, jedoch
konvergiert diese in einigen Fàllen nicht.
Kann man eventuell mit Pràkonditionierung nachhelfen, damit das ganze
numerisch stabiler wird?
Wie müsste man vorgehen?
Bzw. kann jemand sagen, wann die SVD tatsàchlich numerisch instabil
wird? Theoretisch sollte sie immer existieren.
Was kann ich sonst noch tun?
Ich benötige die Pseudoinverse.



Bei Matlab gibts dafür 'svd', das hat bei mir immer gut geklappt.
Octave wird doch sicher auch was dafür haben. Oder musst du was von
Hand basteln?

Gruß,
Bastian

Ähnliche fragen