Streifenbijektion

17/10/2010 - 18:08 von Michael Klemm | Report spam
Hallo,

wie ich bereits vor einigen Monaten bemerkt habe, làsst sich die von Klaus
Nagel erfundene Streifenbijektion mühelos auf Paare G = <v_1,v_2>_Z und G' =
<v'_1,v'_2>_Z von ebenen (schiefwikeligen) Gittern übertragen, wenn die
Transformationsmatrix der beiden Basen die Determinante 1 hat. Es stellt
sich nun die Frage, ob im Fall G = G' die Streifenbijektion alpha die
Identitàt ist. Hierzu habe ich ein Gegenbeispiel, bei dem sich alpha lokal
so abàndern làßt, dass die entstehende Abbildung beta die Identitàt ist:
http://www.znaturforsch.com/EtwasMa...hismen.pdf

Gruß
Michael
 

Lesen sie die antworten

#1 Michael Klemm
20/10/2010 - 08:41 | Warnen spam
Hallo,

auf Seite 5 habe ich noch die Verbesserung der Streifenbijektion
im allgemeinen Fall S e SL(2,Z) hinzugefügt.

Gruß
Michael

"Michael Klemm" wrote in message
news:i9f71l$vpo$03$
Hallo,

wie ich bereits vor einigen Monaten bemerkt habe, làsst sich die von Klaus
Nagel erfundene Streifenbijektion mühelos auf Paare G = <v_1,v_2>_Z und G'
= <v'_1,v'_2>_Z von ebenen (schiefwikeligen) Gittern übertragen, wenn die
Transformationsmatrix der beiden Basen die Determinante 1 hat. Es stellt
sich nun die Frage, ob im Fall G = G' die Streifenbijektion alpha die
Identitàt ist. Hierzu habe ich ein Gegenbeispiel, bei dem sich alpha lokal
so abàndern làßt, dass die entstehende Abbildung beta die Identitàt ist:
http://www.znaturforsch.com/EtwasMa...hismen.pdf

Gruß
Michael

Ähnliche fragen