Zuerst machen die Max-Planck-Institut Forscher bei mir Notfallmedizin ... dann geht's zur Physik

22/10/2016 - 14:44 von Xenon131 | Report spam
Forschungsbericht 2010 - Max-Planck-Institut für Quantenoptik
Ein Phononen-Laser
Autoren
Herrmann, Maximilian; Vahala, Kerry; Knünz, Sebastian; Batteiger, Valentin; Saathoff, Guido; Udem, Thomas; Hànsch, Theodor W.

Abteilungen
Laserspektroskopie (Prof. Dr. Theodor Hànsch)
MPI für Quantenoptik, Garching

Zusammenfassung
Seit Jahrzenten versuchen Physiker einen sogenannten Phononen-Laser zu realisieren – ein mechanisches Analogon zu einem optischen Laser, das auf quantisierten Schwingungen (Phononen) anstelle von Lichtquanten (Photonen) beruht. Das ist nun mit einem einzelnen oszillierenden Ion, das in einer Radiofrequenz-Falle gespeichert ist, erstmals gelungen. Eine Schlüsselrolle spielte dabei die Verwendung eines „blau-verstimmten“ Laserstrahls, der der Bewegung des Ions Energie zuführt. Darüber hinaus hat sich gezeigt, dass der Phononen-Laser ein vielversprechendes System zum Nachweis extrem schwacher Kràfte ist.
Schwingende Ionen imitieren optische Laser
Laser haben unseren Alltag revolutioniert. Bei zahllosen Anwendungen, vom DVD-Player zu Hause über die Scannerkasse beim Discounter bis hin zur Augenlaseroperation im Klinikum sind diese besonderen Lichtquellen nicht mehr wegzudenken. Einer Gruppe um Prof. T. W. Hànsch am Max-Planck-Institut für Quantenoptik (MPQ) ist es nun in Zusammenarbeit mit Prof. K. Vahala vom California Institute of Technology Caltech (USA) gelungen, ein mechanisches Analogon zu einem optischen Laser zu entwickeln, das statt auf Licht (Photonen) auf Schall (Phononen) beruht [1]. Kernstück des Experiments ist ein einzelnes in einer Paulfalle gespeichertes Ion, das mit zwei Laserstrahlen kontrolliert zum Schwingen angeregt wird.

Ein Phononen-Laser ist für einige Bereiche der Physik ein begehrtes Instrument, insbesondere für Anwendungen in der Festkörperphysik; er ließ sich aber jahrzehntelang nicht realisieren [2]. Zwar ist das hier beschriebene System noch ein gutes Stück von den ursprünglich gedachten Anwendungen entfernt. Es bietet jedoch zum ersten Mal die Möglichkeit, die Physik des Phononen-Lasers in einem gut kontrollierbaren System zu untersuchen. Des Weiteren zeichnen sich neue, unvorhergesehene Anwendungen ab, z. B. zur Detektion extrem schwacher Kràfte.

Laser zeichnen sich durch Kohàrenz aus
Seine enorme technische Bedeutung verdankt der Laser einer besonderen Eigenschaft, der sogenannten Kohàrenz. Licht ist eine elektromagnetische Welle und àhnlich wie bei Wasserwellen können sich zwei aufeinandertreffende Wellenzüge gegenseitig verstàrken, falls Wellenberg auf Wellenberg trifft, oder auslöschen, falls ein Wellenberg auf ein Wellental trifft. Dieses Phànomen bezeichnet man als Interferenz, und Licht, das interferenzfàhig ist, als kohàrent. Inkohàrentes Licht, etwa das thermische Licht einer Glühbirne, ist hingegen kaum interferenzfàhig.

Die Kohàrenz ist bedeutsam für viele praktische Anwendungen. Beispielsweise kann man ràumlich kohàrentes Licht besser bündeln, oder umgekehrt, damit feinere Strukturen betrachten. Genau auf diesem Umstand beruht die Funktionsweise von CD, DVD und Blu-ray Abspielgeràten, denn hier ist die Information (die Musik oder der Film) in Form von winzigen Vertiefungen hinterlegt. Je kleiner die Vertiefungen (Bits!) sind, die man gerade noch auflösen kann, desto mehr davon können auf eine Scheibe gepackt werden. Andere Anwendungen, z. B. in der Grundlagenforschung, beruhen auf der exzellenten zeitlichen Kohàrenz von Laserlicht.

Stimulierte Prozesse
Warum aber ist ein Laser kohàrent und eine Glühbirne nicht? Hierfür ist die sogenannte stimulierte Emission verantwortlich. Angeregte Atome senden Licht üblicherweise spontan aus, d. h. zu einem zufàlligen Zeitpunkt und in eine zufàllige Richtung. So entsteht das Licht beispielsweise in Glühbirnen und aus diesem Grund ist deren Licht inkohàrent. Falls aber angeregte Atome einem intensiven Lichtfeld ausgesetzt werden, können sie dazu gebracht werden, das Licht synchron mit dem eingestrahlten Lichtfeld auszusenden, d. h. in Phase und in die gleiche Richtung. Dieser Prozess wurde als erstes von Albert Einstein erkannt und wird als stimulierte Emission bezeichnet. Auf genau diesem Vorgang beruht das Funktionsprinzip des Lasers und dieser Umstand wurde im Namen verewigt: Laser ist ein Akronym, das „Lichtverstàrkung durch stimulierte Emission“ bedeutet, im Englischen „Light Amplification by Stimulated Emission of Radiation“.

Der Weg zum Phononen-Laser
Leider erwies sich die Realisierung eines Phononen-Lasers, bei dem die Schwingungsquanten direkt in einem Festkörper erzeugt werden, schon bald als schwierig. Die große Anzahl von Atomen ist gleichbedeutend mit einer großen Anzahl von Schwingungsmöglichkeiten (Moden), was die stimulierte Emission wesentlich unwahrscheinlicher als die spontane Emission macht. Daher wurden Anstrengungen unternommen, die Anzahl der Schwingungsmöglichkeiten zu begrenzen, indem man zu niedrigdimensionalen Systemen überging. Eine Schicht von Atomen hat beispielsweise weniger Schwingungsmöglichkeiten als ein Würfel. Diese Versuche hatten aber leider bislang keinen durchschlagenden Erfolg.

Der nun am MPQ realisierte Ansatz hat gewissermaßen den Endpunkt dieser Entwicklung vorweggenommen. Er basiert auf einem einzelnen, ungestörten Atom, das nur eine einzige Schwingungsmöglichkeit besitzt. So konnte zum ersten Mal erfolgreich ein Phononen-Laser realisiert werden. Nun mag das auf den ersten Blick wie ein Pyrrhussieg erscheinen, da man sich weit vom ursprünglichen Ziel einer Realisierung im Festkörper entfernt hat. Das System ist jedoch hervorragend dafür geeignet, die Physik des Phononen-Lasers in einem gut kontrollierbaren System zu untersuchen. Darüber hinaus zeichnen sich unvorhergesehene, interessante Anwendungen am Horizont ab.

Das Experiment
Das Experiment im Detail. Links im Bild ist eine vereinfachte Skizze des experimentellen Aufbaus zu sehen. Ein einzelnes Magnesiumion wird in einer Radiofrequenz-Ionenfalle gespeichert und von zwei Laserstrahlen beleuchtet. Ein „rotverstimmter“ Strahl, der „Kühllaser“, hat eine Frequenz knapp unterhalb der optischen Resonanzfrequenz des Ions und dàmpft dessen Bewegung. Ein weiterer „blauverstimmter“ Strahl, der „Pumplaser“, liegt etwas oberhalb der optischen Resonanz und führt der Bewegung Energie zu. Die Vergrößerung zeigt ein mit dem Abbildungssystem aufgenommenes, zeitgemitteltes Bild eines schwingenden Ions. Rechts im Bild ist skizziert, wie das Ion im harmonischen Potenzial der Falle schwingt.
Bild vergrößern
Das Experiment im Detail. Links im Bild ist eine vereinfachte Skizze des experimentellen Aufbaus zu sehen. Ein einzelnes ... [mehr]
© Max-Planck-Institut für Quantenoptik / Herrmann
Das Experiment (Abb. 1) besteht im Kern aus drei „Zutaten“: (1) Ein einzelnes Magnesiumion dient als schwingungsfàhiges System und wird in einer Hochvakuum-Apparatur in einer sogenannten Paulfalle mittels elektromagnetischer Felder gespeichert. So stellt das Ion einen nahezu idealen harmonischen Oszillator wie aus dem Schulbuch dar – eine Punktmasse, aufgehàngt an einer reibungs- und massefreien Feder. (2) Ein weiterer Bestandteil ist ein einstellbares Maß an Dàmpfung. Hierzu wird das Ion von einem Laserstrahl (Kühllaser) beleuchtet, der eine Frequenz leicht unterhalb der optischen Resonanzfrequenz aufweist. Photonen aus diesem „rotverstimmten“ Strahl werden überwiegend dann vom Ion gestreut, wenn es sich auf den Laserstrahl zubewegt, denn in diesem Fall verschiebt sich die Laserfrequenz aufgrund des Dopplereffekts nàher in Richtung der Resonanzfrequenz. Der Rückstoß der absorbierten Photonen bremst das Ion im Mittel ab, es wird also gekühlt. (3) Nun kommt ein zweiter Laser (Pumplaser) ins Spiel; diesmal blauverstimmt, also mit einer Frequenz etwas oberhalb der optischen Resonanzfrequenz. Dieser Strahl dient als Energiequelle, um der Bewegung Energie zuzuführen. Insgesamt stellt das Ion einen von stochastischen Kràften getriebenen harmonischen Oszillator mit einstellbarer Güte dar.

Beobachtungen
Trotz der Einfachheit dieses Systems – ein Ion und zwei Laserstrahlen – konnte eine überraschend große Vielfalt von interessanten Phànomenen beobachtet werden. Zunàchst stand die Frage im Mittelpunkt, welche Wirkung der blauverstimmte Laser auf die Bewegung des Ions hat. Da der rotverstimmte Laser die Bewegung kühlt, lag die Vermutung nahe, dass der blauverstimmte Laser schlicht heizt, d. h. der ungeordneten Bewegung Energie zuführt. Wie das Experiment aber zeigte, geschieht etwas viel Interessanteres: Der blauverstimmte Laser verstàrkt die Bewegung kohàrent, und zwar durch stimulierte Emission von Schwingungsquanten, den Phononen. Im Experiment wird dabei wie folgt vorgegangen. In einem ersten Schritt wurde nur der rotverstimmte Laser eingestrahlt und Bilder vom Ion gemacht. Die (Gaußsche) Helligkeitsverteilung zeigt, dass das Ion thermisch in der Falle zappelt.

Der Phononen-Laser. Das Bild zeigt eine Reihe von Aufnahmen eines einzelnen Ions. Von links nach rechts wurde schrittweise die Intensitàt des blauverstimmten Lasers erhöht. Zunàchst überwiegt die Dàmpfung und das Ion bewegt sich lediglich thermisch, wie die gaußförmige Helligkeitsverteilung zeigt. Oberhalb einer gewissen Intensitàt, der Schwelle, beginnt das Ion in vertikaler Richtung stabil zu schwingen. Wàhrend der Belichtungszeit von etwa einer Sekunde schwingt das Ion circa fünzigtausend mal hin und her. Die Wendepunkte der Schwingung erscheinen heller, da das Ion hier im Mittel mehr Zeit verbringt.
Bild vergrößern
Der Phononen-Laser. Das Bild zeigt eine Reihe von Aufnahmen eines einzelnen Ions. Von links nach rechts wurde ... [mehr]
© Max-Planck-Institut für Quantenoptik / Herrmann
Nun wurde der blauverstimmte Laser hinzugenommen und dessen Intensitàt schrittweise erhöht (Abb. 2). Zunàchst wird das Ion lediglich wàrmer, wie an der breiter werdenden, aber immer noch gaußförmigen Helligkeitsverteilung abzulesen ist. Doch ab einer gewissen kritischen Intensitàt, der Schwelle, fàngt das Ion plötzlich an stabil zu schwingen. Das zeigt sich an der Helligkeitsverteilung mit zwei hellen Enden, denn an den Wendepunkten der Schwingung verweilt das Ion etwas lànger. Interessant ist hierbei, dass das Ion mit einer wohl definierten Frequenz schwingt, obwohl die Photonen des blauverstimmten Lasers zeitlich ungeordnet darauf einprasseln.

Ebenfalls verblüffend: Die Schwelle ist durch den Punkt gegeben, bei dem die Kühlkraft des „roten“ Lasers ebenso groß ist wie die treibende Kraft durch den „blauen“ Laser. Oberhalb dieser Schwelle könnte man daher erwarten, dass dem Ion unablàssig Energie zugeführt wird und es schließlich aus der Falle heraus getrieben würde. Wie sich jedoch herausstellt, nimmt vielmehr die Wirkung des blauverstimmten Lasers ab, wenn die Schwingungsamplitude zunimmt, wohingegen die Kühlleistung des rotverstimmten Lasers zunimmt. Auf diese Weise geht die zunehmende Verstàrkung in Sàttigung über und man erhàlt eine stabile Schwingung. Darüber hinaus zeigt eine theoretische Betrachtung, dass die Schwingung durch die stimulierte Erzeugung von Phononen aufrechterhalten wird.

Vergleich zum optischen Laser
Dieses Verhalten ist nahezu vollkommen analog zu einem optischen Laser, wenn man die Intensitàt des blauen Lasers als Pumpleistung auffasst und die Schwingungsamplitude des Ions als Laserleistung. Unterhalb der Laserschwelle bewegt sich das Ion thermisch – auch beim optischen Laser dominieren in diesem Bereich spontane Prozesse. Oberhalb der Schwelle beginnt die Laseroszillation von selbst, beim Ion durch ein spontanes Phonon, beim optischen Laser durch ein spontanes Photon. Der Betrieb ist in beiden Fàllen dank Verstàrkungssàttigung stabil und wird durch die stimulierte Erzeugung von Photonen bzw. Phononen aufrechterhalten. Übrigens wird in diesem System keine Besetzungsinversion aufgebaut, das Ion verhàlt sich in dieser Beziehung analog zu einem Ramanlaser. Ein augenfàlliger Unterschied ist, dass in diesem System keine Phononen ausgekoppelt bzw. abgestrahlt werden. Hierbei entspricht der Phononen-Laser einem optischen Laser, dessen Resonator aus nahezu perfekt reflektierenden Spiegeln aufgebaut wurde.

Anwendungen und Ausblick
In einem nàchsten Schritt können nun weitere Ionen hinzugefügt werden, um den Übergang zu einem Festkörpersystem zu simulieren. Darüber hinaus ist kürzlich ein weiteres interessantes Experiment gelungen, das die Analogie zu einem optischen Laser vertieft und nahelegt, dass der Phononen-Laser möglicherweise geeignet ist um ultra-schwache Kràfte zu detektieren (siehe auch einen Vorschlag in [3]). Hierbei wurde das schwingende Ion des Phononen-Lasers zusàtzlich einem schwachen Radiofrequenz-Signal ausgesetzt. Falls die Frequenz des eingestrahlten Signals nur nahe genug an der ungestörten Schwingungsfrequenz war, synchronisierte sich die Bewegung des Ions phasenstarr mit ihm. Dieses Phànomen ist als „Injection Locking“ bekannt und stellt eine kohàrente Verbindung zur Außenwelt dar. Wie die Analyse des Experiments zeigt, waren winzige Kràfte von nur 10-21 N für die Synchronisation nötig, Größenordnungen weniger, als die besten Rasterkraftmikroskope derzeit detektieren können.

Wàhrend rotverstimmte Laser seit geraumer Zeit zur Kühlung von Atomen verwendet werden, war bislang nur wenig darüber bekannt, welche Wirkung blauverstimmte Laser auf die Bewegung eines einzelnen Atoms ausüben. Ausgehend von dieser zunàchst recht abstrakten Frage stießen die Physiker bei ihren Experimenten auf eine Reihe unerwarteter Phànomene. Die Demonstration des ersten Phononen-Lasers und seiner prinzipiellen Eignung zum Nachweis extrem schwacher Kràfte war ein besonderer Erfolg. Man darf also gespannt sein, welche weiteren Überraschungen dieses einfache und elegante System noch zu bieten hat!
 

Lesen sie die antworten

#1 wernertrp
22/10/2016 - 16:02 | Warnen spam
Am Samstag, 22. Oktober 2016 14:44:10 UTC+2 schrieb Xenon131:
Forschungsbericht 2010 - Max-Planck-Institut für Quantenoptik
Ein Phononen-Laser
Autoren
Herrmann, Maximilian; Vahala, Kerry; Knünz, Sebastian; Batteiger, Valentin; Saathoff, Guido; Udem, Thomas; Hànsch, Theodor W.

Abteilungen
Laserspektroskopie (Prof. Dr. Theodor Hànsch)
MPI für Quantenoptik, Garching

Zusammenfassung
Seit Jahrzenten versuchen Physiker einen sogenannten Phononen-Laser zu realisieren – ein mechanisches Analogon zu einem optischen Laser, das auf quantisierten Schwingungen (Phononen) anstelle von Lichtquanten (Photonen) beruht. Das ist nun mit einem einzelnen oszillierenden Ion, das in einer Radiofrequenz-Falle gespeichert ist, erstmals gelungen. Eine Schlüsselrolle spielte dabei die Verwendung eines „blau-verstimmten“ Laserstrahls, der der Bewegung des Ions Energie zuführt. Darüber hinaus hat sich gezeigt, dass der Phononen-Laser ein vielversprechendes System zum Nachweis extrem schwacher Kràfte ist.
Schwingende Ionen imitieren optische Laser
Laser haben unseren Alltag revolutioniert. Bei zahllosen Anwendungen, vom DVD-Player zu Hause über die Scannerkasse beim Discounter bis hin zur Augenlaseroperation im Klinikum sind diese besonderen Lichtquellen nicht mehr wegzudenken. Einer Gruppe um Prof. T. W. Hànsch am Max-Planck-Institut für Quantenoptik (MPQ) ist es nun in Zusammenarbeit mit Prof. K. Vahala vom California Institute of Technology Caltech (USA) gelungen, ein mechanisches Analogon zu einem optischen Laser zu entwickeln, das statt auf Licht (Photonen) auf Schall (Phononen) beruht [1]. Kernstück des Experiments ist ein einzelnes in einer Paulfalle gespeichertes Ion, das mit zwei Laserstrahlen kontrolliert zum Schwingen angeregt wird.

Ein Phononen-Laser ist für einige Bereiche der Physik ein begehrtes Instrument, insbesondere für Anwendungen in der Festkörperphysik; er ließ sich aber jahrzehntelang nicht realisieren [2]. Zwar ist das hier beschriebene System noch ein gutes Stück von den ursprünglich gedachten Anwendungen entfernt. Es bietet jedoch zum ersten Mal die Möglichkeit, die Physik des Phononen-Lasers in einem gut kontrollierbaren System zu untersuchen. Des Weiteren zeichnen sich neue, unvorhergesehene Anwendungen ab, z. B. zur Detektion extrem schwacher Kràfte.

Laser zeichnen sich durch Kohàrenz aus
Seine enorme technische Bedeutung verdankt der Laser einer besonderen Eigenschaft, der sogenannten Kohàrenz. Licht ist eine elektromagnetische Welle und àhnlich wie bei Wasserwellen können sich zwei aufeinandertreffende Wellenzüge gegenseitig verstàrken, falls Wellenberg auf Wellenberg trifft, oder auslöschen, falls ein Wellenberg auf ein Wellental trifft. Dieses Phànomen bezeichnet man als Interferenz, und Licht, das interferenzfàhig ist, als kohàrent. Inkohàrentes Licht, etwa das thermische Licht einer Glühbirne, ist hingegen kaum interferenzfàhig.

Die Kohàrenz ist bedeutsam für viele praktische Anwendungen. Beispielsweise kann man ràumlich kohàrentes Licht besser bündeln, oder umgekehrt, damit feinere Strukturen betrachten. Genau auf diesem Umstand beruht die Funktionsweise von CD, DVD und Blu-ray Abspielgeràten, denn hier ist die Information (die Musik oder der Film) in Form von winzigen Vertiefungen hinterlegt. Je kleiner die Vertiefungen (Bits!) sind, die man gerade noch auflösen kann, desto mehr davon können auf eine Scheibe gepackt werden. Andere Anwendungen, z. B. in der Grundlagenforschung, beruhen auf der exzellenten zeitlichen Kohàrenz von Laserlicht.

Stimulierte Prozesse
Warum aber ist ein Laser kohàrent und eine Glühbirne nicht? Hierfür ist die sogenannte stimulierte Emission verantwortlich. Angeregte Atome senden Licht üblicherweise spontan aus, d. h. zu einem zufàlligen Zeitpunkt und in eine zufàllige Richtung. So entsteht das Licht beispielsweise in Glühbirnen und aus diesem Grund ist deren Licht inkohàrent. Falls aber angeregte Atome einem intensiven Lichtfeld ausgesetzt werden, können sie dazu gebracht werden, das Licht synchron mit dem eingestrahlten Lichtfeld auszusenden, d. h. in Phase und in die gleiche Richtung. Dieser Prozess wurde als erstes von Albert Einstein erkannt und wird als stimulierte Emission bezeichnet. Auf genau diesem Vorgang beruht das Funktionsprinzip des Lasers und dieser Umstand wurde im Namen verewigt: Laser ist ein Akronym, das „Lichtverstàrkung durch stimulierte Emission“ bedeutet, im Englischen „Light Amplification by Stimulated Emission of Radiation“.

Der Weg zum Phononen-Laser
Leider erwies sich die Realisierung eines Phononen-Lasers, bei dem die Schwingungsquanten direkt in einem Festkörper erzeugt werden, schon bald als schwierig. Die große Anzahl von Atomen ist gleichbedeutend mit einer großen Anzahl von Schwingungsmöglichkeiten (Moden), was die stimulierte Emission wesentlich unwahrscheinlicher als die spontane Emission macht. Daher wurden Anstrengungen unternommen, die Anzahl der Schwingungsmöglichkeiten zu begrenzen, indem man zu niedrigdimensionalen Systemen überging. Eine Schicht von Atomen hat beispielsweise weniger Schwingungsmöglichkeiten als ein Würfel. Diese Versuche hatten aber leider bislang keinen durchschlagenden Erfolg.

Der nun am MPQ realisierte Ansatz hat gewissermaßen den Endpunkt dieser Entwicklung vorweggenommen. Er basiert auf einem einzelnen, ungestörten Atom, das nur eine einzige Schwingungsmöglichkeit besitzt. So konnte zum ersten Mal erfolgreich ein Phononen-Laser realisiert werden. Nun mag das auf den ersten Blick wie ein Pyrrhussieg erscheinen, da man sich weit vom ursprünglichen Ziel einer Realisierung im Festkörper entfernt hat. Das System ist jedoch hervorragend dafür geeignet, die Physik des Phononen-Lasers in einem gut kontrollierbaren System zu untersuchen. Darüber hinaus zeichnen sich unvorhergesehene, interessante Anwendungen am Horizont ab.

Das Experiment
Das Experiment im Detail. Links im Bild ist eine vereinfachte Skizze des experimentellen Aufbaus zu sehen. Ein einzelnes Magnesiumion wird in einer Radiofrequenz-Ionenfalle gespeichert und von zwei Laserstrahlen beleuchtet. Ein „rotverstimmter“ Strahl, der „Kühllaser“, hat eine Frequenz knapp unterhalb der optischen Resonanzfrequenz des Ions und dàmpft dessen Bewegung. Ein weiterer „blauverstimmter“ Strahl, der „Pumplaser“, liegt etwas oberhalb der optischen Resonanz und führt der Bewegung Energie zu. Die Vergrößerung zeigt ein mit dem Abbildungssystem aufgenommenes, zeitgemitteltes Bild eines schwingenden Ions. Rechts im Bild ist skizziert, wie das Ion im harmonischen Potenzial der Falle schwingt.
Bild vergrößern
Das Experiment im Detail. Links im Bild ist eine vereinfachte Skizze des experimentellen Aufbaus zu sehen. Ein einzelnes ... [mehr]
© Max-Planck-Institut für Quantenoptik / Herrmann
Das Experiment (Abb. 1) besteht im Kern aus drei „Zutaten“: (1) Ein einzelnes Magnesiumion dient als schwingungsfàhiges System und wird in einer Hochvakuum-Apparatur in einer sogenannten Paulfalle mittels elektromagnetischer Felder gespeichert. So stellt das Ion einen nahezu idealen harmonischen Oszillator wie aus dem Schulbuch dar – eine Punktmasse, aufgehàngt an einer reibungs- und massefreien Feder. (2) Ein weiterer Bestandteil ist ein einstellbares Maß an Dàmpfung. Hierzu wird das Ion von einem Laserstrahl (Kühllaser) beleuchtet, der eine Frequenz leicht unterhalb der optischen Resonanzfrequenz aufweist. Photonen aus diesem „rotverstimmten“ Strahl werden überwiegend dann vom Ion gestreut, wenn es sich auf den Laserstrahl zubewegt, denn in diesem Fall verschiebt sich die Laserfrequenz aufgrund des Dopplereffekts nàher in Richtung der Resonanzfrequenz. Der Rückstoß der absorbierten Photonen bremst das Ion im Mittel ab, es wird also gekühlt. (3) Nun kommt ein zweiter Laser (Pumplaser) ins Spiel; diesmal blauverstimmt, also mit einer Frequenz etwas oberhalb der optischen Resonanzfrequenz. Dieser Strahl dient als Energiequelle, um der Bewegung Energie zuzuführen. Insgesamt stellt das Ion einen von stochastischen Kràften getriebenen harmonischen Oszillator mit einstellbarer Güte dar.

Beobachtungen
Trotz der Einfachheit dieses Systems – ein Ion und zwei Laserstrahlen – konnte eine überraschend große Vielfalt von interessanten Phànomenen beobachtet werden. Zunàchst stand die Frage im Mittelpunkt, welche Wirkung der blauverstimmte Laser auf die Bewegung des Ions hat. Da der rotverstimmte Laser die Bewegung kühlt, lag die Vermutung nahe, dass der blauverstimmte Laser schlicht heizt, d. h. der ungeordneten Bewegung Energie zuführt. Wie das Experiment aber zeigte, geschieht etwas viel Interessanteres: Der blauverstimmte Laser verstàrkt die Bewegung kohàrent, und zwar durch stimulierte Emission von Schwingungsquanten, den Phononen. Im Experiment wird dabei wie folgt vorgegangen. In einem ersten Schritt wurde nur der rotverstimmte Laser eingestrahlt und Bilder vom Ion gemacht. Die (Gaußsche) Helligkeitsverteilung zeigt, dass das Ion thermisch in der Falle zappelt.

Der Phononen-Laser. Das Bild zeigt eine Reihe von Aufnahmen eines einzelnen Ions. Von links nach rechts wurde schrittweise die Intensitàt des blauverstimmten Lasers erhöht. Zunàchst überwiegt die Dàmpfung und das Ion bewegt sich lediglich thermisch, wie die gaußförmige Helligkeitsverteilung zeigt. Oberhalb einer gewissen Intensitàt, der Schwelle, beginnt das Ion in vertikaler Richtung stabil zu schwingen. Wàhrend der Belichtungszeit von etwa einer Sekunde schwingt das Ion circa fünzigtausend mal hin und her. Die Wendepunkte der Schwingung erscheinen heller, da das Ion hier im Mittel mehr Zeit verbringt.
Bild vergrößern
Der Phononen-Laser. Das Bild zeigt eine Reihe von Aufnahmen eines einzelnen Ions. Von links nach rechts wurde ... [mehr]
© Max-Planck-Institut für Quantenoptik / Herrmann
Nun wurde der blauverstimmte Laser hinzugenommen und dessen Intensitàt schrittweise erhöht (Abb. 2). Zunàchst wird das Ion lediglich wàrmer, wie an der breiter werdenden, aber immer noch gaußförmigen Helligkeitsverteilung abzulesen ist. Doch ab einer gewissen kritischen Intensitàt, der Schwelle, fàngt das Ion plötzlich an stabil zu schwingen. Das zeigt sich an der Helligkeitsverteilung mit zwei hellen Enden, denn an den Wendepunkten der Schwingung verweilt das Ion etwas lànger. Interessant ist hierbei, dass das Ion mit einer wohl definierten Frequenz schwingt, obwohl die Photonen des blauverstimmten Lasers zeitlich ungeordnet darauf einprasseln.

Ebenfalls verblüffend: Die Schwelle ist durch den Punkt gegeben, bei dem die Kühlkraft des „roten“ Lasers ebenso groß ist wie die treibende Kraft durch den „blauen“ Laser. Oberhalb dieser Schwelle könnte man daher erwarten, dass dem Ion unablàssig Energie zugeführt wird und es schließlich aus der Falle heraus getrieben würde. Wie sich jedoch herausstellt, nimmt vielmehr die Wirkung des blauverstimmten Lasers ab, wenn die Schwingungsamplitude zunimmt, wohingegen die Kühlleistung des rotverstimmten Lasers zunimmt. Auf diese Weise geht die zunehmende Verstàrkung in Sàttigung über und man erhàlt eine stabile Schwingung. Darüber hinaus zeigt eine theoretische Betrachtung, dass die Schwingung durch die stimulierte Erzeugung von Phononen aufrechterhalten wird.

Vergleich zum optischen Laser
Dieses Verhalten ist nahezu vollkommen analog zu einem optischen Laser, wenn man die Intensitàt des blauen Lasers als Pumpleistung auffasst und die Schwingungsamplitude des Ions als Laserleistung. Unterhalb der Laserschwelle bewegt sich das Ion thermisch – auch beim optischen Laser dominieren in diesem Bereich spontane Prozesse. Oberhalb der Schwelle beginnt die Laseroszillation von selbst, beim Ion durch ein spontanes Phonon, beim optischen Laser durch ein spontanes Photon. Der Betrieb ist in beiden Fàllen dank Verstàrkungssàttigung stabil und wird durch die stimulierte Erzeugung von Photonen bzw. Phononen aufrechterhalten. Übrigens wird in diesem System keine Besetzungsinversion aufgebaut, das Ion verhàlt sich in dieser Beziehung analog zu einem Ramanlaser. Ein augenfàlliger Unterschied ist, dass in diesem System keine Phononen ausgekoppelt bzw. abgestrahlt werden. Hierbei entspricht der Phononen-Laser einem optischen Laser, dessen Resonator aus nahezu perfekt reflektierenden Spiegeln aufgebaut wurde.

Anwendungen und Ausblick
In einem nàchsten Schritt können nun weitere Ionen hinzugefügt werden, um den Übergang zu einem Festkörpersystem zu simulieren. Darüber hinaus ist kürzlich ein weiteres interessantes Experiment gelungen, das die Analogie zu einem optischen Laser vertieft und nahelegt, dass der Phononen-Laser möglicherweise geeignet ist um ultra-schwache Kràfte zu detektieren (siehe auch einen Vorschlag in [3]). Hierbei wurde das schwingende Ion des Phononen-Lasers zusàtzlich einem schwachen Radiofrequenz-Signal ausgesetzt. Falls die Frequenz des eingestrahlten Signals nur nahe genug an der ungestörten Schwingungsfrequenz war, synchronisierte sich die Bewegung des Ions phasenstarr mit ihm. Dieses Phànomen ist als „Injection Locking“ bekannt und stellt eine kohàrente Verbindung zur Außenwelt dar. Wie die Analyse des Experiments zeigt, waren winzige Kràfte von nur 10-21 N für die Synchronisation nötig, Größenordnungen weniger, als die besten Rasterkraftmikroskope derzeit detektieren können.

Wàhrend rotverstimmte Laser seit geraumer Zeit zur Kühlung von Atomen verwendet werden, war bislang nur wenig darüber bekannt, welche Wirkung blauverstimmte Laser auf die Bewegung eines einzelnen Atoms ausüben. Ausgehend von dieser zunàchst recht abstrakten Frage stießen die Physiker bei ihren Experimenten auf eine Reihe unerwarteter Phànomene. Die Demonstration des ersten Phononen-Lasers und seiner prinzipiellen Eignung zum Nachweis extrem schwacher Kràfte war ein besonderer Erfolg. Man darf also gespannt sein, welche weiteren Überraschungen dieses einfache und elegante System noch zu bieten hat!



kann das quantifiziert werden ?
welche schwachen Kràfte können gemessen werden; ato-ponds und kleiner ?
könnte man damit schwache Gravitationskràfte nachweisen wie bei Podklednow ?

Ähnliche fragen